Weighted composition followed and proceeded by differentiation operators from Q k ( p , q ) spaces to Bloch-type spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Products of Composition and Differentiation Operators from QK(p,q) Spaces to Bloch-Type Spaces

and Applied Analysis 3 Let D be the differentiation operator on H D , that is, Df z f ′ z . For f ∈ H D , the products of composition and differentiation operators DCφ and CφD are defined, respectively, by DCφ ( f ) ( f ◦ φ)′ f ′(φ) φ′, CφD ( f ) f ′ ( φ ) , f ∈ H D . 1.8 The boundedness and compactness of DCφ on the Hardy space were investigated by Hibschweiler and Portnoy in 11 and by Ohno in...

متن کامل

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

متن کامل

WEIGHTED COMPOSITION OPERATORS FROM F (p, q, s) TO BLOCH TYPE SPACES ON THE UNIT BALL

Let φ(z) = (φ1(z), · · · , φn(z)) be a holomorphic self-map of B and ψ(z) a holomorphic function on B, where B is the unit ball of C n . Let 0 < p, s < +∞,−n−1 < q < +∞, q + s > −1 and α ≥ 0, this paper gives some necessary and sufficient conditions for the weighted composition operator Wψ,φ induced by φ and ψ to be bounded and compact between the space F (p, q, s) and α-Bloch space β.

متن کامل

Volterra Composition Operators from F ( p , q , s ) Spaces to Bloch - type Spaces

Let H(B) denote the space of all holomorphic functions on the unit ball B ⊂ Cn. Let φ be a holomorphic self-map of B and g ∈ H(B). In this paper, we investigate the boundedness and compactness of the Volterra composition operator

متن کامل

Weighted composition operators from Bergman-type spaces into Bloch spaces

Let D be the open unit disk in the complex plane C. Denote by H(D) the class of all functions analytic on D. An analytic self-map φ : D → D induces the composition operator Cφ on H(D), defined by Cφ ( f ) = f (φ(z)) for f analytic on D. It is a well-known consequence of Littlewood’s subordination principle that the composition operator Cφ is bounded on the classical Hardy and Bergman spaces (se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2012

ISSN: 1029-242X

DOI: 10.1186/1029-242x-2012-160